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Abstract

We report on the measurement of the cross-section of pp̄ ! � + Z with

Z ! b

¯

b at CDF, using the entire 9.1 fb

�1
collected in Run II. We measured

� = 0.36 ± 0.16(stat.)±0.11(sys.) for events with E

�

T

> 15 GeV, E

iso

T

< 1 GeV,

leading jet E

T

> 30 GeV, secondary jet E

T

> 20 GeV, jet |⌘| < 1.5, |⌘� | < 1.0,

50 GeV < m

jj

< 110 GeV, m

�jj

> 80 GeV, �R

j�

> 0.7, and �R

jj

> 1.5. This

is consistent with the value predicted by Pythia of � = 0.35 pb.
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2 2 ANALYSIS OVERVIEW

1 Introduction

Identification of gauge boson hadronic decays (including heavy flavor) is challenging,
as a small two-jet resonance must be extracted from a much larger QCD background.
However, being able to identify hadronic resonances present in data dominated by a
large QCD background is of critical importance in the search for new particles with
dominantly hadronic decays. One such example is the observation of the Higgs boson,
for which direct evidence long eluded experimenters.

One major channel for the Higgs search is associated production with an additional
vector boson, where the Higgs decays into bb̄. However, at the center-of-mass energyp

s = 1.96 TeV, the standard model (SM) Higgs boson cross section is much smaller
than that for similar non-resonant processes, and therefore, sophisticated techniques
are required to suppress the QCD background while preserving a high signal detection
e�ciency.

Considering this, identifying dijet resonances of Z bosons provides an interesting
test bench for developing such techniques, due to increased statistical sample and the
fact that their characteristics are known from independent analyses. Also, if a Z boson
dijet mass peak can be developed with su�cient statistics, it could be a useful tool to
constrain the jet energy scale and improve dijet mass resolution, two important factors
in any precision measurement of signatures with final state jets.

We are able to improve upon a previous search for hadronic decays of W and Z
bosons at CDF [10] by using the complete Run II dataset and requiring b-flavor jets.
This is the first analysis for that specifies heavy flavor for the products of the Z decay.

Since the �+Z cross section is larger than heavier diboson cross sections, it provides
in principle an excellent opportunity to identify the Z ! bb̄ resonance.

As well as providing insight into future gauge boson searches in heavy flavor chan-
nels, diboson production with a photon is of independent interest, since � + Z produc-
tion is correlated to the non-Abelian character of electroweak theory, and is sensitive
to certain physics beyond the standard model through possible contributions of ZZ�
and Z�� couplings forbidden in the standard model. Such e↵ects have been searched
for in leptonic channels, but testing for the presence of similar events in heavy flavor
channels could allow for a more stringent test of the SM in this sector.

2 Analysis Overview

In this paper we report on a search for a Z decaying to two heavy-flavor jets based on a
sample of �+bb̄ data collected throughout CDF Run II, corresponding to an integrated
luminosity of 9136 ± 548 pb�1. A previous study, using inclusive hadronic channels
rather than specific heavy flavor analysis, performed by the CDF collaboration using
184 pb�1 of data was able to set a limit on �+W (Z) production. [10] Specifying heavy-
flavor jets together with the improved data sample allows for improved sensitivity in
the present analysis.
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For this analysis, we distinguish between pp̄ ! Z� ! �bb̄, which we designate
ISR (Initial State Radiation), and pp̄ ! Z ! �bb̄, which we designate FSR (Final
State Radiation). We used MadGraph [14] to simulate the parton-level interactions
and Pythia [13] to simulate the showering and detector-level e↵ects. We prepared
Monte Carlo samples to simulate both ISR and FSR events, as well as an additional
Monte Carlo sample model our primary irreducible background, which is standard
QCD production of �bb̄ (explicitly forbidding Z production). The signal Monte Carlo
was generated using MadGraph 4 (equivalent to 1682 fb�1 for ISR and 3045 fb�1 for
FSR), and the background Monte Carlo (equivalent to 45.3 fb�1)was generated using
MadGraph 5, version 1.3.30, where we explicitly specify there is up to 1 additional
parton in the MadGraph events and we use MLM matching to eliminate the possibility
of double-counting of partons from Pythia showering. Since ISR is more kinematically
distinct from this primary background, this analysis is optimized to preferentially select
ISR.

2.1 Trigger E�ciency

The trigger used in this analysis, which selects events with a � candidate and heavy
flavor jets, is not perfectly e�cient, so we model its behavior by considering a related
data sample. The analysis requires that reconstructed and calibrated E�

T

> 15 GeV to
avoid threshold e↵ects from the � portion of the trigger, and the additional requirements
are applied to the Monte Carlo so that element of the trigger is replicated, and need
not be separately simulated We apply a 1 GeV cut on isolation energy to both data
and Monte Carlo to duplicate the trigger cut.

To evaluate the e�ciency of our trigger, we consider a generally more inclusive
dataset, and select events which contain at least one b-tagged jet (jet E

T

> 15 GeV,
|⌘j| < 1.5). Since no b-tagging algorithm is completely pure, we use profile matching
(using the Roofit [9] analysis package for all fitting in this analysis) on the secondary
vertex mass to estimate the contribution of light flavor, charm jets, and b jets to
the total secondary vertex mass profile for b-tagged jets. To determine the e�ciency
of the trigger, we compare the estimated number of b flavor jets that pass the SVT
trigger (shown in Figure 1(b))to the estimated number present without requiring the
SVT trigger, as shown in Figure 1(a), repeating this for di↵erent ranges of jet energy.
Secondary vertex mass templates were obtained using MC simulation (generated using
Pythia). As seen in Figure 2.1 the e�ciency, while consistent with being constant, does
show a slight increase at higher transverse energy.

Throughout the remainder of the analysis, all Monte Carlo events will be weighted
by the trigger e�ciency here, based on the E

T

of their leading jet.
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(a) Inclusive.

)2Invariant Mass of Secondary Vertex (GeV/c
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ev
en

ts
 / 

( 0
.1

 )
0

1000

2000

3000

4000

5000

)2Invariant Mass of Secondary Vertex (GeV/c
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Ev
en

ts
 / 

( 0
.1

 )
0

1000

2000

3000

4000

5000

-1 + jets data, L=9.1 fbγCDF 

Sum of b,c, light quark jets

 385±b-jet contribution 25832 

 607±c-jet contribution 30067 

 377±light jet contribution 4163 

CDF Run II Preliminary

(b) Pass SVT trigger.

Figure 1: Mass associated with secondary vertex for jets passing inclusive � trigger,
using the full jet E

T

range of 20-140 GeV.

3 Event Selection

For our analysis, we require that events have 2 b-tagged jets and an isolated photon
candidate. We also require that the jets and � both be central, that is, jet |⌘| < 1.5
and |⌘�| < 1.0.

To increase the purity of the photon sample, we require that photon candidates
pass a standard photon ID neural network cut of 0.85[2]. We also applied a number
of kinematic cuts in order to reduce the presence of background and possible trigger
artifacts. As such, we place a 15 GeV transverse energy requirement on photons,
require leading jet transverse energy exceed 30 GeV, secondary jet transverse energy
exceed 20 GeV, that the reconstructed dijet mass is between 50 and 110 GeV, that the
reconstructed mass of the photon and two jets exceeds 110 GeV, as well as some cuts
on the spacing and location of the jets. Analysis cuts are summarized in table 1. This
gives us 1555 data events which pass this set of cuts, to be used in our analysis. These
cuts were chosen so as to limit the amount of background present without signficantly
reducing the ISR content of the data.
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Figure 2: SVT trigger e�ciency as a function of jet E
T

.

4 Background Estimation and Signal Yield

The principle challenge in this analysis is to distinguish between the various sources
of background events and � + Z events. The selection process requires a signature of
�bb̄ present in the reconstruction of the event, so background can be described as a
combination of those events whereby one or more elements is mistakenly reconstructed
so as to imitate the selected signature and those events whereby the requisite signature
is produced through other channels besides that of the desired � + Z production.

Events which imitate the desired signature may be broadly classed into two cate-
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Table 1: Summary of cuts implemented in this analysis, excluding trigger requirements.

E�

T

> 15 GeV
Leading jet E

T

> 30 GeV
Secondary jet E

T

> 20 GeV
m

jj

50 < m
jj

< 110 GeV
m

�jj

> 80 GeV
�R(�, j1) > 0.7
�R(�, j2) > 0.7
�R(j1, j2) > 1.5
Jet |⌘| < 1.5
|⌘�| < 1.0

gories: those events where the � reconstructed by the event is the product of a mesonic
decay (such as a ⇡0 decay), rather than the prompt production characteristic of the
signal; and those events where one or more b-tagged jets do not actually contain a b
quark. Due to the relevant production cross-sections, production of �bb̄ is dominated
by QCD processes. Background due to inaccurate reconstruction will be modeled using
data sidebands to represent the processes as accurately as possible, whereas QCD �bb̄
production is modeled using Monte Carlo simulated data.

In order to ascertain the prevalence of events with mistaken reconstruction, the
data distribution for a relevant parameter is fitted to a mixture of MC templates,
one of which contains a simulation of background events, but which are sometimes
reconstructed as passing the analysis cuts, while another contains the intended signal.

As there still remains significant QCD background which cannot be readily distin-
guished from the Z related events, a neural network is developed to distinguish between
�bb̄ events related to QCD production and Z production. The data is then fitted to
four templates, one of fixed normalization modeling the presence of those events with a
non-prompt � (that is, � produced by the decay of another particle, rather than those
generated at the primary vertex), one of fixed normalization modeling those events
with one or more jets tagged as b-flavor (which pass the � neural network cut), but
actually of lighter flavor, and two whose normalization is determined by the fitting
algorithm for the signal and primary QCD �bb̄ background.

4.1 Fake photon sideband estimation and modeling

To estimate the presence of fake � in our data sample, we model the number of non-
prompt photons that pass our photon ID neural network cut. To do so, we plot the
photon ID neural network output for our data sample (excluding the photon ID cut)
and use our QCD Monte Carlo sample to obtain templates for prompt and non-prompt
photons. The data profile is then fitted to a combination of these two templates, which
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yields an estimate of how many decay product � are present in the data that will
pass the photon ID cut. This plot, with fit values shown for the entire range of �
ann outputs, is shown in Figure 3. We expect that, out of our 1555 data events,
134.7 ± 9.0(stat.)±29.8(sys.) are due to non-prompt photons being reconstructed as
prompt photons.

To model the e↵ect of the template shape of this background on the final neural
network fit, we consider those data events that pass all other analysis cuts, but which
have a photon neural network ID output between 0.15 and 0.85, as a sideband. We
use the normalization calculated above and use this as an element of our fit. Errors
associated with uncertainties in the rate are determined by adjusting the normalization
of the sideband in accordance with our uncertainty. The combined rate and shape
systematic uncertainties for this sideband turn out to be our smallest systematic e↵ect.

4.2 Fake b-jet sideband estimation and modeling

As our estimation of trigger e�ciency suggests, not all jets tagged by Tight SecVtx
contain a b quark. In order to correct for this, we look at the two-dimensional dis-
tribution of secondary mass vertex of the two leading jets (secondary mass vertex for
the second jet versus secondary mass vertex of the leading jet) for the data sample.
Then, we fit this distribution to a combination of three templates: a fake � sideband
template derived from data which does not pass the photon neural network cut, with
normalization fixed by our estimate for that parameter; a Monte Carlo template of
those events with two b jets, whose normalization is determined by the fitting algo-
rithm; and a Monte Carlo template of those events with at least one non-b jet, with the
normalization also variable as a fit parameter. The projection of this fit along each axis
is shown in Figure 4. For the final neural network fit, we model the presence of these
fake b events using a data sideband which passes all other analysis cuts, but which has
exactly 0 b tagged jets.

4.3 Neural network development and fitting

Figure 5 shows the distribution of m
jj

with the analysis cuts in place. As the separation
between signal and background is insu�cient to obtain a satisfactory fit by fitting
directly to the dijet (or three-body) mass, more rigorous tools will need to be developed.
Therefore, we used the built-in Root libraries to develop a neural network to distinguish
between our QCD �bb̄ production and our ISR �Z where Z ! bb̄. To select our input
parameters, we required that these events show clear distinction between these two
samples and that the data was reasonably well-modeled by the QCD MC sample. We
therefore selected the following 8 variables:

• m
jj

, reconstructed dijet mass

• m
�jj

, reconstructed three-body mass
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Figure 3: Fitted � ann neural network output. Used to estimate presence of 135 ± 31
fake � events in � + jets data.

• Ej1
T

, leading jet transverse energy

• Ej2
T

, secondary jet transverse energy

• �R(�, j1), separation between leading jet and photon

• �R(�, j2), separation between secondary jet and photon

• ��
jj

, di↵erence in azimuthal angle between jets
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Figure 4: One-dimensional projection of secondary vertex mass distribution fit for
leading jet E

T

between 20 and 140 GeV.

• �⌘
jj

, di↵erence in pseudorapidity angle between jets

The output of the neural network, as applied to the data sample, is then fitted to
obtain the signal yield, as shown in Figure 6. The fake b and fake � sidebands have
their normalization fixed by our estimates as to their presence. The signal population
is estimated as being 90% ISR and 10% FSR (based on relative MadGraph cross-
section for analysis cuts). The data output is then fitted, with the normalization of
the MC signal and MC QCD background templates determined by the RooFit analysis
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Figure 5: Dijet mass distribution for data and various Monte Carlo samples (Monte
Carlo templates normalized to data).

algorithm, with results summarized in Table 2. Note that the statistical uncertainty
is still quite large relative to estimated signal yield. This is the dominant uncertainty
in this analysis and is likely due at least in part to the relatively large amount of
irreducible background relative to the amount of signal. To illustrate the quality of
the fit, we reconstruct several kinematic quantities in Figures 7 through 12, with the
normalization for each component based on our fit estimate as to its presence in data,
as shown in Table 2.
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Figure 6: Fit of neural network output, with components shown stacked on the plot.

5 Cross Section Estimation

Cross section was calculated using the relation � = N/L✏, where � is the cross section,
N the number of events in the signal yield, L the integrated luminosity, and ✏ the
unfolding factor. A careful analysis of our processes shows that several factors will
have significant impacts on cross section measurements. For ease of reference, these
are included here.
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Table 2: Elements of (uncorrected) neural network fit. Sidebands are normalized based
on predicted presence, while �bb̄ and �Z content is determined by the fitting algorithm.

Fit Component Number of Events

Fake � sideband 134.7
Fake b-jet sideband 358.7

Fitted �bb̄ 956.1
Fitted �Z 106.4

5.1 Unfolding Factor

Since the unfolding factor (✏) incorporates all of the trigger and selection e�ciencies,
it is readily calculated by determining the number of parton level Monte Carlo events
that pass the kinematic cuts and comparing that to the number of reconstructed events
that satisfy the same cuts, with the distribution as a function of E�

T

shown in Figure
13. This plot was obtained by dividing two histograms, each derived from our Monte
Carlo sample. The numerator was simply those events that passed our analysis cuts,
as weighted for SVT trigger e�ciency. The denominator was those Monte Carlo events
where the generator level information satisfied the kinematic cuts (�E

T

> 15 GeV,
Eiso

T

< 1 GeV, |⌘�| < 1, jet |⌘| < 1.5, leading jet E
T

> 30 GeV, secondary jet E
T

> 20
GeV, 50 GeV < m

jj

< 110 GeV, m
�jj

> 80 GeV, �R
j�

> 0.7, and �R
jj

> 1.5).
However, this neglects cases where the Monte Carlo e�ciency does not match the
data e�ciency. The uncertainties associated with these reconstructions are detailed
in Table 3. We calculate our unfolding factor to be ✏ = .0362 ± .0003(stat.) ± .0049
(sys.). However, since some sources of uncertainty in unfolding factor are directly
correlated with changes in yield, we break down uncertainties in unfolding factor and
independently determine their impact upon the final cross section.

Table 3: Percentage changes in uncertainty of unfolding factor due to various systematic
e↵ects

Source of uncertainty Impact upon unfolding factor
SVT trigger rate 8.3%
Jet energy scale 5.1%
� energy scale 2.0%
� acceptance 2.0%
b acceptance 7.1%

Total systematic uncertainty 13.5%
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Figure 7: Reconstructed m
jj

for composite fit.

5.2 Systematic E↵ects from PDF Uncertainties

Since Monte Carlo generation and cross section estimation is highly dependent upon
the relative likelihood of a particular parton being the active element in a particular in-
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Figure 8: Reconstructed three-body invariant mass for composite fit.

teraction, any uncertainties in these parameters (which cannot, of course, be measured
directly) will impact any dependent result. As we used the 20 orthogonal CTEQ6M[12]
eigenvectors to reweight our Monte Carlo sample, we also possess the relative weight-
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(a) Leading jet ET
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(b) Secondary jet ET

Figure 9: Transverse energy associated with each jet, normalized to match composite
fit.

ings for each event according to these eigenvectors. In order to evaluate the associated
systematic e↵ect, we can re-weight our Monte Carlo events in accordance with each of
these separate eigenvectors (twice, ±1�, for each eigenvector), and fit the templates for
Monte Carlo samples reweighted in this way determine the impact of each particular
uncertainty upon our neural network fit. The larger deviation for each eigenvector is
taken to be the associated uncertainty, and these 20 values are then added in quadra-
ture to obtain a total uncertainty associated with pdf weighting. This suggests an
uncertainty in yield of 16.1 signal events (e↵ect on cross section detailed in Table 7).

5.3 Systematic E↵ects from Photon Energy Scale

As � energy determines acceptance for events, we need to evaluate the impact of the
uncertainty in energy scale upon our analysis. As this scale is relatively well-defined,
we observe the e↵ects of a 1.5 percent shift in photon transverse energy on our fit [3]
(when we shift the energy scale on the Monte Carlo templates) and on the unfolding
factor (where it is applied to the reconstructed events). These results partially cancel
each other out, and correlate to an uncertainty of roughly one percent in the cross
section. As this e↵ect is relatively minimal, a more detailed analysis of this e↵ect is
not deemed necessary.
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Figure 10: Angular separation between � and jets, normalized to match composite fit.

5.4 Systematic E↵ects from Jet Energy Scale

As jet energy scale is a larger uncertainty at CDF, its impacts merit a more careful
study. In addition, since we use no less than four neural network variables dependent
upon our jet energy scale (as reconstructed mass is dependent upon measured trans-
verse energy of the jets), we expect this analysis to be especially sensitive to this e↵ect.
Thus, we compare two di↵erent methods of evaluating the associated change in signal
yield, taking the larger to be our associated uncertainty. The first method is simply to
repeat the fit with the input parameters shifted for the MC events in accordance with
the scale uncertainties. The second is to fit the shifted Monte Carlo templates to the
unbiased fit result profile for the same templates (that is, to change the shape of the
templates according to the shift in jet energy scale, and then fit the new templates to
the old shape, to reduce the impact of the statistical fluctuations in the data). This
method is intended to reduce the impact of the statistical fluctuations in the data.
As the latter method suggests a larger uncertainty (a change of 30 in signal yield),
it is used for this analysis. In a similar manner to the � energy scale, the jet energy
scale systematic uncertainty is slightly reduced by the correlated change in unfolding
factor (which, as for the � energy scale, we calculate by applying the scale shift to
the reconstructed events). It still remains the dominant systematic uncertainty in this
analysis.
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Figure 11: �� between the two jets using composite fit normalization.

5.5 Systematic E↵ects from Fake b Sideband

We also need to consider the uncertainties resulting from the mistag rate of the Tight
SecVtx b tagger, both in those jets falsely tagged and in those b jets inaccurately not
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Figure 12: �⌘ between the two jets using composite fit normalization.

tagged as such. Table 4 shows that even the data sample with 0 b tags contains some
�bb̄ events. We model the systematic impact of this presence by constructing additional
sideband templates with varying amounts of �bb̄ events present. We do this adding
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Figure 13: Unfolding factor versus Photon E
t

.

the 0-tag sideband to varying amounts of the 1-tag sideband (noting, in passing, that
the 0-tag sideband has much larger statistics), and observing the impact of di↵erent
sidebands on the estimated signal yield. This turns out to be surprisingly consistent,
suggesting that the true yield present in the sample is slightly larger than that obtained
directly from the fit. Thus, we plot signal yield as a function of �bb̄ presence in the fake
b sideband, which suggests an actual yield of 120.7 signal events. We take the di↵erence
between this and our 0-tag sideband fit (14.3 events) to be a systematic uncertainty
in this yield, associated with the fake b sideband. Table 5 shows our best estimate for
the composition of the data sample, accounting for this systematic e↵ect.
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Table 4: Expected number of events with a given number of b tags for each Monte Carlo
predicted data sample, normalization for ISR, FSR, and �bb̄based on MadGraph pre-
dictions as well as the actual number of events present in the data with that particular
number of b tags.

Number of b tags ISR FSR �bb̄ data
2+ 52.8 5.95 791 1555
1 123 15.8 4196 19074
0 116 19.4 7223 179058

Table 5: Elements of neural network fit, corrected for fake b sideband. Sidebands are
normalized based on predicted presence, while �bb̄ and �Z content is determined by
the fitting algorithm.

Fit Component Number of Events

Fake � sideband 134.7
Fake b-jet sideband 358.7

Fitted �bb̄ 941.8
Fitted �Z 120.7

5.6 Summary of Systematic E↵ects on Cross Section

Statistical and systematic uncertainties are summarized in Tables 6 and 7. Clearly,
the statistical uncertainty associated with the quality of the neural network fit itself is
the dominant contribution, with jet energy scale our largest systematic e↵ect. Thus,
for our kinematic cuts (50 < m

jj

< 110 GeV, m
�jj

> 80 GeV, leading jet E
T

> 30
GeV, secondary jet E

T

> 20 GeV, E�

T

> 15 GeV, Eiso

T

< 1 GeV, �R
j�

> 0.7, and
�R

jj

> 1.5), we have � = 0.36 ± 0.16(stat.)±0.11(sys.) pb, consistent with our
prediction of � = 0.35 pb, obtained by Pythia, using a k-factor of 1.41, which we
obtain from the predicted value for hadronic cross sections described in [7] (linear term
in fit in source appears to have sign reversed, based on plot shown, which we change).

6 Summary

In this analysis, we are able to measure the cross-section associated with Z� production
where Z ! bb̄ to be 0.36 ± 0.16(stat.) ± 0.11 (sys.) pb, consistent with our Monte
Carlo prediction of 0.35 pb. This analysis is limited by large statistical uncertainty
in the neural network fit, and is also rather sensitive to the jet energy scale. A more
sophisticated approach to neural network development might be able to improve the
uncertainty achieved.
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Table 6: Statistical uncertainties in this analysis and the resulting impact on cross
section

Source of Uncertainty Impact of Uncertainty on Cross Section (pb)
Neural Network Fit .161
Fake � Rate .002
Fake b Rate .006
Unfolding factor .004
Total Statistical Uncertainty .161

Table 7: Systematic uncertainties in this analysis and their impact upon our cross
section measurement

Source of Uncertainty Impact of Uncertainty on Cross Section (pb)
Jet Energy Scale 0.075
Fake b Sideband 0.049
PDF Weighting 0.031
Luminosity 0.022
Fake � Sideband 0.011
� Energy Scale 0.003
Unfolding � e�ciency 0.008
Unfolding b e�ciency 0.027
SVT trigger rate 0.032
SVT trigger Energy-dependence 0.022
Total Systematic Uncertainty 0.109
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